5202 QP CODE SEMESTER P.R. GOVERNMENT COLLEGE (AUTONOMOUS), KAKINADA

SEM V EXAMINATIONS JANUARY -2024 III B.SC. SUBJECT: MATHEMATICS SEC B

DATE & SESSION 25.01.2024 AN

REG NO

MAX MARKS

50

SECTION-A

Answer any THREE questions of the following by choosing atleast ONE from $3 \times 10 M = 30 M$ each section. Each question carries 10 marks.

PART-A

1. Prove that
$$\beta(l, m) = \frac{\Gamma(l) \Gamma(m)}{\Gamma(l+m)}$$
. (BT-2)

2. Prove that
$$\Gamma(m)$$
 $\Gamma\left(m + \frac{1}{2}\right) = \frac{\sqrt{\pi}}{2^{2m-1}} \Gamma(2m)$. (BT-2)

3. Find the power series solution of the equation $(x^2 + 1)y'' + xy' - xy = 0$ (BT-2)near x = 0.

PART-B

4. Prove that
$$H_n(x) = (-1)^n e^{x^2} \frac{d^n}{dx^n} (e^{-x^2})$$
. (BT-2)

5. Prove that i) $\int_{-1}^{1} P_m(x) P_n(x) dx = 0$ if $m \neq n$.

ii)
$$\int_{-1}^{+1} [P_n(x)]^2 dx = \frac{2}{2n+1}$$
. (BT-2)

6. Show that i)
$$J_{\frac{-1}{2}}(x) = \sqrt{\frac{2}{\pi x}} \cos x \ ii) \ J_{\frac{1}{2}}(x) = \sqrt{\frac{2}{\pi x}} \sin x$$
 (BT-3)

SECTION-B

Answer any <u>FOUR</u> questions. Each question carries 5 marks. $4 \times 5 M = 20 M$

7. Evaluate
$$\int_0^2 x(8-x^3)^{\frac{1}{3}} dx$$
. (BT-2)

8. Compute a)
$$\Gamma\left(\frac{-1}{2}\right)$$
 b) $\Gamma\left(\frac{-3}{2}\right)$.

9. Show that x = 0 is an ordinary singular point of the equation

$$(x^2 - 1)y'' + xy' - y = 0$$
, but $x = 1$ is a regular singular point. (BT-3)

10. Find the radius of convergence of the series
$$\frac{x}{2} + \frac{1.3}{2.5}x^2 + \frac{1.3.5}{2.5.8}x^3 + \cdots$$
 (BT-4)

11. Prove that
$$H_{2n}(0) = (-1)^n \frac{(2n)!}{n!}$$
. (BT-2)

12. Evaluate
$$P_0(x)$$
, $P_1(x)$ and $P_2(x)$. (BT-2)

13. Prove that
$$\frac{d}{dx}(xJ_nJ_{n+1}) = x(J_n^2 - J_{n+1}^2)$$
. (BT-2)